MATH 54 - HINTS TO HOMEWORK 6

PEYAM TABRIZIAN

Here are a couple of hints to Homework 6! Enjoy! :)

Section 5.1: Eigenvalues and eigenvectors

Remember: To find the eigenvalues, calculate $\operatorname{det}(A-\lambda I)$ and find the zeros of the resulting polynomial. To find a basis for the eigenspaces, find $N u l(A-\lambda I)$ for each eigenvalue λ that you found! Also, you should never get $N u l(A-\lambda I)=\{0\}$
5.1.3. Calculate $A \mathbf{v}$, where A is the given matrix and \mathbf{v} is the given vector.
5.1.17. Remember that the determinant of an upper-triangular matrix is just the product on the entries of the diagonal!

5.1.21.

(a) \mathbf{F} (\mathbf{x} has to be nonzero)
(b) \mathbf{T}
(c) \mathbf{T}
(d) \mathbf{T} (depending on what you mean by easy and hard :))
(e) \mathbf{F}

SECTION 5.2: The CHARACTERISTIC EQUATION

5.2.15, 5.2.17. Remember that the determinant of an upper/lower-triangular matrix is just the product on the entries of the diagonal!

5.2.21.

(a) \mathbf{F}
(b) \mathbf{F}
(c) \mathbf{T}
(d) $\mathbf{F}(-5$ is an eigenvalue $)$

SECTION 5.3: DIAGONALIZATION

5.3.1, 5.3.3. If $A=P D P^{-1}$, then $A^{k}=P D^{k} P^{-1}$

Date: Friday, October 7th, 2011.
5.3.21.
(a) \mathbf{T}
(b) \mathbf{T}
(c) \mathbf{F}
(d) \mathbf{F}

SEction 5.4: Eigenvectors and linear transformations
5.4.1. The matrix in question is $A=\left[\begin{array}{lll}{\left[\mathbf{T}\left(\mathbf{b}_{\mathbf{1}}\right)\right]_{\mathcal{D}}} & {\left[\mathbf{T}\left(\mathbf{b}_{\mathbf{2}}\right)\right]_{\mathcal{D}}} & {\left[\mathbf{T}\left(\mathbf{b}_{\mathbf{3}}\right)\right]_{\mathcal{D}}}\end{array}\right]$
5.4.3. Remember that $\mathbf{e}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=(1,0,0)$ etc.
5.4.9. For (b) Show $T(\mathbf{p}+\mathbf{q})=T(\mathbf{p})+T(\mathbf{q})$ and $T(c \mathbf{p})=c T(\mathbf{p})$, for (c), calculate $T(1), T(t)$ and $T\left(t^{2}\right)$.
5.4.11. $A=\left[\left[\mathbf{T}\left(\mathbf{b}_{\mathbf{1}}\right)\right]_{\mathcal{B}} \quad\left[\mathbf{T}\left(\mathbf{b}_{\mathbf{2}}\right)\right]_{\mathcal{B}}\right]$. That is, calculate $T\left(\mathbf{b}_{\mathbf{1}}\right)$ and $T\left(\mathbf{b}_{\mathbf{2}}\right)$ and express your answer in terms of $\mathbf{b}_{\mathbf{1}}$ and $\mathbf{b}_{\mathbf{2}}$.
5.4.17. This problem is MUCH longer than you think it is! To show A is not diagonalizable, calculate the eigenvalues of A, and find a basis for each eigenspace. If the sum of the dimensions of the bases is not equal to 2 , then A is not diagonalizable.

Section 5.5: Complex eigenvalues

5.5.1, 5.5.3, 5.5.5. Just use the same technique you usually use to find eigenvalues and eigenvectors!
5.5.7, 5.5.9, 5.5.11. First, calculate $r=\sqrt{\operatorname{det}(A)}$ (or take the length of the first row of A). Then factor out r from A and recognize the resulting matrix as a rotation matrix, i.e. find ϕ such that the remaining matrix equals to $\left[\begin{array}{cc}\cos (\phi) & -\sin (\phi) \\ \sin (\phi) & \cos (\phi)\end{array}\right]$
5.5.13, 5.5.15, 5.5.17. First, find the eigenvalues of A, and pick one of them. Then the first ROW of C consists the real and imaginary parts of the eigenvalue you picked. Then remember that the diagonal entries of C are the same, and the other entries are opposites of each other. Finally, to get P, find an eigenvector corresponding to the eigenvalue you picked, and then the columns of P are the real and imaginary parts of that eigenvector!

